Both the C-Terminal Polylysine Region and the Farnesylation of K-RasB Are Important for Its Specific Interaction with Calmodulin
نویسندگان
چکیده
BACKGROUND Ras protein, as one of intracellular signal switches, plays various roles in several cell activities such as differentiation and proliferation. There is considerable evidence showing that calmodulin (CaM) binds to K-RasB and dissociates K-RasB from membrane and that the inactivation of CaM is able to induce K-RasB activation. However, the mechanism for the interaction of CaM with K-RasB is not well understood. METHODOLOGY/PRINCIPAL FINDINGS Here, by applying fluorescence spectroscopy and isothermal titration calorimetry, we have obtained thermodynamic parameters for the interaction between these two proteins and identified the important elements of K-RasB for its interaction with Ca(2+)/CaM. One K-RasB molecule interacts with one CaM molecule in a GTP dependent manner with moderate, micromolar affinity at physiological pH and physiologic ionic strength. Mutation in the polybasic domain of K-Ras decreases the binding affinity. By using a chimera in which the C-terminal polylysine region of K-RasB has been replaced with that of H-Ras and vice versa, we find that at physiological pH, H-Ras-(KKKKKK) and Ca(2+)/CaM formed a 1:1 complex with an equilibrium association constant around 10(5) M(-1), whereas no binding reaction of K-RasB-(DESGPC) with Ca(2+)/CaM is detected. Furthermore, the interaction of K-RasB with Ca(2+)/CaM is found to be enhanced by the farnesylation of K-RasB. CONCLUSIONS/SIGNIFICANCE We demonstrate that the polylysine region of K-RasB not only contributes importantly to the interaction of K-RasB with Ca(2+)/CaM, but also defines its isoform specific interaction with Ca(2+)/CaM. The farnesylation of K-RasB is also important for its specific interaction with Ca(2+)/CaM. Information obtained here can enhance our understanding of how CaM interacts with K-RasB in physiological environments.
منابع مشابه
Resistance of K - RasBVl 2 proteins to farnesyltransferase inhibitors in Ratl cells ( protein prenylation / geranylgeranyl transferase I / transformed cells / benzodiazepine - 5 B / L - 739 , 749 )
Benzodiazepine (BZA)-5B, a CAAX farnesyltransferase inhibitor, was previously shown to block the farnesylation of H-Ras and to reverse the transformed morphology of Ratl cells expressing oncogenic H-Rasvl2. Nontransformed Ratl cells were not affected by BZA-5B, suggesting that they produce a form of Ras whose prenylation is not blocked by this compound. The likely candidate is K-RasB, which dif...
متن کاملCalmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling.
Activation of Ras induces a variety of cellular responses depending on the specific effector activated and the intensity and amplitude of this activation. We have previously shown that calmodulin is an essential molecule in the down-regulation of the Ras/Raf/MEK/extracellularly regulated kinase (ERK) pathway in cultured fibroblasts and that this is due at least in part to an inhibitory effect o...
متن کاملDetermination of the Binding Constant of Terbium-Transferrin
Apotransferrin (apo Tf) in 0.1 M N-(2hydroxyethyl)piperazine-N2-ethanesulfanic acid at 25 ˚C and pH 7.4 has been titrated with acidic solution of Tb3+. The binding of Tb3+ at the two specific metal-binding sites of transferrin was followed from the changes in the difference UV spectra at 245 nm. The molar absorptivity per binding site for Tb3+...
متن کاملBioinformatic and empirical analysis of a gene encoding serine/threonine protein kinase regulated in response to chemical and biological fertilizers in two maize (Zea mays L.) cultivars
Molecular structure of a gene, ZmSTPK1, encoding a serine/threonine protein kinase in maize was analyzed by bioinformatic tool and its expression pattern was studied under chemical biological fertilizers. Bioinformatic analysis cleared that ZmSTPK1 is located on chromosome 10, from position 141015332 to 141017582. The full genomic sequence of the gene is 2251 bp in length and includes 2 exons. ...
متن کاملSpectroscopic Studies on the Interaction of Co(II) Tetrapyridinoporphyrazine with Synthetic Polynucleotides and DNA
Interactions of cationic tetrakis (N,N´,N´´,N´´´-tetramethyltetra-3,4-pyridinoporphyrazinatocobalt(II) (Co(tmtppa)) with synthetic polynucleotides, poly(A-T), poly(G-C) and calf thymus DNA have been characterized in 5 mM phosphate buffer, pH 7.2, by optical absorption and fluorescence spectroscopy. The appearance of hypochromicity effect and the red shift in UV-Vis spectrum of porphyrazine was ...
متن کامل